Transport specified in dimensions, measured in units
5 Basic dimensions used to describe all physical quantities:
Quantity | Dimension | Units(SI) | Note |
---|---|---|---|
Temperature | T | Kelvin ($K$); Celsius ($^\circ$$C$ ) | $T(K) = T(^\circ C)+273.15$ |
Force | $MLt^{-2}$ | Newton ($N$) | $1 N = 1kg m s^{-2}$ |
Energy | $ML^{2}t^{-2}$ | Joule ($J$) | 1J=1Nm |
Heat Flow (Q) | $ML^{2}t^{-3}$ | Watts ($W$) | $1W = 1Js^{-1} = 1Nms^{-1}$ |
Heat Flux (q) | $Mt^{-3}$ | $Wm^{-2}$ | $Flux = Flow \div Area$ |
Concentration (C) | $ML^{-3}$ | $kgm^{-3}$ | $molar \quad C [molm^{-3}]$ |
Solute Flow (J) | $Mt^{-1}$ | $kgs^{-1}$ | $molar \quad J [mols^{-1}]$ |
Solute Flux (j) | $ML^{-2}t^{-1}$ | $kgm^{-2}s^{-1}$ | $molar \quad j [molm^{-2}s^{-1}]$ |
If body A is in thermal equilibrium with body B, and B with C, then A is in thermal equilibrium with C
The energy of an isolated system is constant
Energy can neither be created or destroyed, it only changes forms (Conservation of Energy)
When two systems are brought into thermal contact, heat flows spontaneously from the one at higher temperature to the one at lower temperature, not the way around