1. Reynolds Transport Theorem

Recall RTT:

$$ \underbrace{\frac{dB_\text{system}}{dt}}\text{Term A} = \underbrace{\frac{\partial}{\partial t}\int\text{CV}\rho\beta dV}\text{Term B} + \underbrace{\oint\text{CS}\rho \beta (\vec{v}\cdot\hat{n}) dA}_\text{Term C} $$

<aside> 💡 RTT applies to Fluid Mechanics, Heat Transport and Mass Transport!!

</aside>

<aside> 💡 RTT balances changes of an extensive property within a Lagrangian System with intensive property in Eulerian Control Volume

</aside>

2. Integral Form of Mass Transport Equation

RTT of Solute Mass

$$ B_\text{system} \to N \qquad \beta \to \frac{N}{m} $$

<aside> 💡 Dilute Assumption: Volume of CV contain solution $\approx$ Volume of Solvent

</aside>

$$ \text{RTT} \quad \longmapsto \quad \frac{dN}{dt} = \frac{\partial}{\partial t}\int_\text{CV}C dV + \oint_\text{CS}C (\vec{v}\cdot\hat{n}) dA $$

Similar to Heat Transport, we know, for mass transport:

$$ \frac{dN}{dt} = \dot{J_D}+\dot{S_V} $$

Therefore: