1. Transient Heat Conduction

<aside> 💡 How can we describe these time-dependent changes??

WeChat Screenshot_20230316203906.png

WeChat Screenshot_20230316203857.png

2. Lumped Capacitance Method

If $Biot(H.T.)\ll1$

<aside> 💡 Temperature is nearly uniform within solid at each point in time.

</aside>

This can simplify transient problems:

$$ T(x,t) \approx T(t) $$

Recall the Integral Form of Heat Transport:

$$ \frac{\partial}{\partial t}\int\rho c_p T dV

\cancel{\int_\text{CV}\dot S_V dV}

\int_\text{CS}(\vec q \cdot \hat n)dA

\cancel{\int_\text{CS}\rho c_p T(\vec v \cdot \hat n)dA} $$

$$ \frac{\partial}{\partial t}\int\rho c_p T dV

\int_\text{CS}(\vec q \cdot \hat n)dA =-q_hA $$

As $\rho$, $c_p$ and $T$ are uniform within CV, only $T$ changes with time:

$$ \rho c_p V \frac{\partial T}{\partial t} = -q_hA $$

WeChat Screenshot_20230316205419.png

Therefore,

$$ \rho c_p V\frac{\partial T}{\partial t} = -hA(T-T_\infty) $$

In words:

$$ \text{Rate of change of Thermal Energy} = \text{Convective Heat Transfer from surface} $$

Rearrange:

$$ \frac{\partial T}{\partial t} = -\frac{hA}{\rho c_pV}(T-T_\infty) $$

Here, the constant term in words:

$$ \frac{hA}{\rho c_pV} = \frac{\text{Conduction Conduvtivity} (hA)}{\text{Heat Capacitance} (\rho c_p V)} $$