<aside> 💡 How can we describe these time-dependent changes??
If $Biot(H.T.)\ll1$
<aside> 💡 Temperature is nearly uniform within solid at each point in time.
</aside>
This can simplify transient problems:
$$ T(x,t) \approx T(t) $$
Recall the Integral Form of Heat Transport:
\cancel{\int_\text{CS}\rho c_p T(\vec v \cdot \hat n)dA} $$
\int_\text{CS}(\vec q \cdot \hat n)dA =-q_hA $$
As $\rho$, $c_p$ and $T$ are uniform within CV, only $T$ changes with time:
$$ \rho c_p V \frac{\partial T}{\partial t} = -q_hA $$
Therefore,
$$ \rho c_p V\frac{\partial T}{\partial t} = -hA(T-T_\infty) $$
In words:
$$ \text{Rate of change of Thermal Energy} = \text{Convective Heat Transfer from surface} $$
Rearrange:
$$ \frac{\partial T}{\partial t} = -\frac{hA}{\rho c_pV}(T-T_\infty) $$
Here, the constant term in words:
$$ \frac{hA}{\rho c_pV} = \frac{\text{Conduction Conduvtivity} (hA)}{\text{Heat Capacitance} (\rho c_p V)} $$